
QTKit
© W. Lonsing 2009

QTKit

QTKit
© W. Lonsing 2009

Two goals:

•Substitute the old Cocoa Application Kit classes
NSMovie and NSMovieView.

•Provide a new API to cover more extensive
QuickTime functions and data types.

The QuickTimeKit (QTKit.framework)
is a framework developed for working
with QuickTime in Cocoa applications.

QTKit
© W. Lonsing 2009

QTKit

Features

•API to play Movies
•API to record Movies
•Support for a wide variety of formats to encode

and decode Audio and Video.

QTKit
© W. Lonsing 2009

QTKit

History

•First introduced in Tiger (OS X 10.4)
•Significantly enhanced in Leopard (OS X 10.5)

•Quicktime has a history of its own, starting in
1991 with Quicktime 1.0 on Apple Macintosh.

That said, Quicktime made its real Cocoa appearance on OS X
almost 4 years late.
NSMovie and NSMovieView already came frome NeXTStep.

QTKit
© W. Lonsing 2009

QTKit

Classes for Playback

•QTMovie (instead of NSMovie)
•QTMovieView (instead of NSMovieView)

•QTTrack and QTMedia, which provide access to
the lower Carbon API.

QTKit
© W. Lonsing 2009

QTKit
Classes for Recording

•QTCaptureDevice represents each connected
device as instance

•QTCaptureDeviceInput as input source for media
devices of all kind (cams and mics)

•Preview classes (QTCaptureView and
QTCaptureAudioPreviewOutput). Both need a
device for input and output.

QTKit
© W. Lonsing 2009

QTKit

How to record... (the simple way)

•Collect all connected devices with
‘+inputDevicesWithMediaType’ from
QTCaptureDevice and

•Open them as needed.
•Use QTCaptureMovieFileOutput to record and

save the data.
Delegation is common in the QTKit.

QTKit
© W. Lonsing 2009

QTKit

How to record...

•Collect all connected devices and open them as
needed.

•Use Preview-Classes to evaluate the media.
•Manipulate the Media
•Create a movie and write it to file.

QTKit
© W. Lonsing 2009

QTKit

As for a movie...

•Collect the cameras and open them.
•Use the delegate method in QTCaptureView:
- (CIImage *)view:(QTCaptureView *)view
 willDisplayImage:(CIImage *)image
to manipulate every frame image

Inside this method CoreImage and its filters is the
technique of choice.

http://developer.apple.com/documentation/GraphicsImaging/Reference/QuartzCoreFramework/Classes/CIImage_Class/Reference/Reference.html#//apple_ref/doc/c_ref/CIImage
http://developer.apple.com/documentation/GraphicsImaging/Reference/QuartzCoreFramework/Classes/CIImage_Class/Reference/Reference.html#//apple_ref/doc/c_ref/CIImage

QTKit
© W. Lonsing 2009

QTKit

... and storing it in a file:

•Create the movie by adding frame after frame
with time-intervals in QTMovie:
- (void)addImage:(NSImage *)image
 forDuration:(QTTime)duration
 withAttributes:(NSDictionary *)attributes

Convert a CIImage with filters and then to an NSImge to
set it as frame in the movie. The dictionary’s mandatory
attribute is ‘QTAddImageCodecType’.

QTKit
© W. Lonsing 2009

QTKit
Summary

A lot of progress

•Cocoa is now really supported
•The cumbersome Quicktime-API is under the

hood.
•Interface Builder is integrated and thus
•Basic functionality is easy to implement

QTKit
© W. Lonsing 2009

all but perfect

•Support in Interface Builder is not free of bugs
•Utilizing output media makes output devices

necessary. To gain access to the CIImages in a
stream a capture view needs to be displayed
somehow, maybe hidden as UI-element.

•The underlying Quicktime-API is still there and
lurking.

QTKit
Summary

Quicktime still has its level of craptitude.

QTKit
© W. Lonsing 2009

QTKit
© W. Lonsing 2009

QTKit …outlook

Snow

•The API has not changed that much.
•Quicktime X is coming…

Problems to just build and run some
apps on Snow.

QTKit
© W. Lonsing 2009

Time-laps Movie, ~ 6h

