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Two goals: 

•Substitute the old Cocoa Application Kit classes 
NSMovie and NSMovieView.  

•Provide a new API to cover more extensive 
QuickTime functions and data types.

The QuickTimeKit (QTKit.framework) 
is a framework developed for working 
with QuickTime in Cocoa applications.
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Features 

•API to play Movies 
•API to record Movies 
•Support for a wide variety of formats to encode 

and decode Audio and Video.
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History 

•First introduced in Tiger (OS X 10.4)  
•Significantly enhanced in Leopard  (OS X 10.5) 

•Quicktime has a history of its own, starting in 
1991 with Quicktime 1.0 on Apple Macintosh.

That said, Quicktime made its real Cocoa appearance on OS X 
almost 4 years late. 
NSMovie and NSMovieView already came frome NeXTStep.
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Classes for Playback 

•QTMovie (instead of NSMovie) 
•QTMovieView (instead of NSMovieView) 

•QTTrack and QTMedia, which provide access to 
the lower Carbon API. 
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Classes for Recording 

•QTCaptureDevice represents each connected 
device as instance 

•QTCaptureDeviceInput as input source for media 
devices of all kind (cams and mics) 

•Preview classes (QTCaptureView and 
QTCaptureAudioPreviewOutput). Both need a 
device for input and output.  
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How to record... (the simple way) 

•Collect all connected devices with 
‘+inputDevicesWithMediaType’ from 
QTCaptureDevice and  

•Open them as needed. 
•Use QTCaptureMovieFileOutput to record and 

save the data. 
Delegation is common in the QTKit.
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How to record... 

•Collect all connected devices and open them as 
needed. 

•Use Preview-Classes to evaluate the media. 
•Manipulate the Media 
•Create a movie and write it to file. 
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As for a movie... 

•Collect the cameras and open them. 
•Use the delegate method in QTCaptureView: 
- (CIImage *)view:(QTCaptureView *)view  
  willDisplayImage:(CIImage *)image 
to manipulate every frame image 

Inside this method CoreImage and its filters is the 
technique of choice. 

http://developer.apple.com/documentation/GraphicsImaging/Reference/QuartzCoreFramework/Classes/CIImage_Class/Reference/Reference.html#//apple_ref/doc/c_ref/CIImage
http://developer.apple.com/documentation/GraphicsImaging/Reference/QuartzCoreFramework/Classes/CIImage_Class/Reference/Reference.html#//apple_ref/doc/c_ref/CIImage


QTKit 
© W. Lonsing 2009

QTKit

... and storing it in a file: 

•Create the movie by adding frame after frame 
with time-intervals in QTMovie: 
- (void)addImage:(NSImage *)image 
  forDuration:(QTTime)duration 
  withAttributes:(NSDictionary *)attributes 

Convert a CIImage with filters and then to an NSImge to 
set it as frame in the movie. The dictionary’s mandatory 
attribute is ‘QTAddImageCodecType’.
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QTKit 
Summary

A lot of progress 

•Cocoa is now really supported 
•The cumbersome Quicktime-API is under the 

hood. 
•Interface Builder is integrated and thus 
•Basic functionality is easy to implement 
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all but perfect 

•Support in Interface Builder is not free of bugs 
•Utilizing output media makes output devices 

necessary. To gain access to the CIImages in a 
stream a capture view needs to be displayed 
somehow, maybe hidden as UI-element. 

•The underlying Quicktime-API is still there and 
lurking. 

QTKit 
Summary

Quicktime still has its level of craptitude.
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QTKit …outlook

Snow 

•The API has not changed that much. 
•Quicktime X is coming… 

Problems to just build and run some 
apps on Snow.
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Time-laps Movie, ~ 6h


