
MapKit revisited

MapKit revisited © W. Lonsing 2014

History:

Apple introduced MapKit with iOS, maps were based on Google.

With iOS 6.0, Apple provided its own mapping service, which lacked some
quality, especially level-of-detail.

With iOS 7 Apple opened up its MKMapView to potential other map
provider.

MapKit revisited

MapKit revisited © W. Lonsing 2014

Techniques:

Maps are loaded based on strict locative informations.

Dedicated SDKs from third party content provider.

Maps are loaded based on encoded informations, namely from map-tile-
services

MapKit revisited

MapKit revisited © W. Lonsing 2014

Loading maps based
on defined locations

A complete map can loaded based on locative informations:

•One location with latitude and longitude and a bounding box

•Two locations forming a rectangular section.

•A textual address is used.

The map is loaded as described. Modifying such a map means always recalculating
the rectangular section.

This style used for static maps. It is not suitable for dynamic maps with paning and
zooming.

MapKit revisited

MapKit revisited © W. Lonsing 2014

SDKs
Google Maps

Bing (Microsoft)

MapQuest

MapBox

… and more

Typically there is a subclass, or a
similar class to MKMapView, which
should be used instead. Usually the
delegate-pattern with the same
methods as from MKMapView is used.

Third party SDK may show different
concepts of the UI. Integration may be
difficult.

MapKit revisited

MapKit revisited © W. Lonsing 2014

Loading maps
from map tile services

Requirements:

•Consistent projection scheme.

•Tiles are encoded by a tile scheme

✦The scheme is used for loading tiles …

✦… and displaying the tiles

MapKit revisited

MapKit revisited © W. Lonsing 2014

Mercator projection

True scale only on the equator

Angles true on small scales

Easy to use for rectangular tile schemes

Source: Wikipedia

Source: Google

MapKit revisited

MapKit revisited © W. Lonsing 2014

 Tiles are 256 × 256 pixel PNG files

	 Each zoom level is a directory, each column is a subdirectory, and each
tile in that column is a file

	 Filename(url) format is /zoom/x/y.png

Zoom levels between 0 and 18, maybe more or less

Zoom level n: 2 × 2 tiles for the complete globe

Slippy map
tilenames

n n

[Openstreetmap convention]

MapKit revisited

MapKit revisited © W. Lonsing 2014

Good News

All major map-services are following the scheme:

Tiles 256 x 256 pixels

Mercator projection

Zoom levels

Same tile scheme; only Bing uses quad keys.
It’s really simple

MapKit revisited

MapKit revisited © W. Lonsing 2014

static NSString * const template = @"http://tile.openstreetmap.org/{z}/{x}/{y}.png";

MKTileOverlay *overlay = [[MKTileOverlay alloc] initWithURLTemplate:template];
overlay.canReplaceMapContent = YES;

[self.mapView addOverlay:overlay
 level:MKOverlayLevelAboveLabels];

#pragma mark - MKMapViewDelegate

- (MKOverlayRenderer *)mapView:(MKMapView *)mapView
 rendererForOverlay:(id <MKOverlay>)overlay
{
 if ([overlay isKindOfClass:[MKTileOverlay class]]) {
 return [[MKTileOverlayRenderer alloc] initWithTileOverlay:overlay];
 }

 return nil;
}

Code:

MapKit revisited

MapKit revisited © W. Lonsing 2014

Custom overlays:

Add informations above the tiles

subclass MKTileOverlay

Watermarking

subclass only
MKTileOverlayRenderer

MapKit revisited

MapKit revisited © W. Lonsing 2014

-(void)loadTileAtPath:(MKTileOverlayPath)path result:(void (^)(NSData *, NSError *))result {

 CGSize sz = self.tileSize;
 CGRect rect = CGRectMake(0, 0, sz.width, sz.height);

 UIGraphicsBeginImageContext(sz);
 CGContextRef ctx = UIGraphicsGetCurrentContext();
 [[UIColor grayColor] setStroke];
 CGContextSetLineWidth(ctx, 0.5);
 CGContextStrokeRect(ctx, CGRectMake(0, 0, sz.width, sz.height));
 NSString *text = [NSString stringWithFormat:@"X=%ld\nY=%ld\nZ=%ld",(long)path.x,(long)path.y,
(long)path.z];
 [text drawInRect:rect withAttributes:@{NSFontAttributeName:[UIFont systemFontOfSize:20.0],
 NSForegroundColorAttributeName:[UIColor blackColor]}];
 UIImage *tileImage = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();
 NSData *tileData = UIImagePNGRepresentation(tileImage);
 result(tileData,nil);

}

subclass of
MKTileOverlay

MapKit revisited

MapKit revisited © W. Lonsing 2014

-(void)drawMapRect:(MKMapRect)mapRect zoomScale:(MKZoomScale)zoomScale inContext:(CGContextRef)context {

 [super drawMapRect:mapRect zoomScale:zoomScale inContext:context];

 CGRect rect = [self rectForMapRect:mapRect];
 CGContextSetFillColorWithColor(context,
 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! [UIColor colorWithRed:1.0 green:0.5 blue:0.5 alpha:0.2].CGColor);

 CGContextFillRect(context, rect);

}

Watermarking

subclass
MKTileOverlayRenderer
implement drawMapRect:…

MapKit revisited

MapKit revisited © W. Lonsing 2014

Offline

The tiles from map-services are stored in instances of NSDate

Instances of MKTileOverlay provide these instances.

Cache them locally using NSCache.

Store them persistently.

What can we do here?

There is nothing to do with Apple’s service.

MapKit revisited

MapKit revisited © W. Lonsing 2014

- (void)loadTileAtPath:(MKTileOverlayPath)path result:(void (^)(NSData *data, NSError *error))result
{
 if (!result) {return;}

 NSString *keyPath = [self stringFromTileOverlayPath:path];
 NSPurgeableData *cachedData = [self.cache objectForKey: keyPath];
 if (cachedData) {
 !! ! ! ! ! ! ! result([NSData dataWithData: cachedData], nil);
 } else
 {
 NSURLRequest *request = [NSURLRequest requestWithURL:[self URLForTilePath:path]
 cachePolicy:NSURLRequestReloadIgnoringCacheData timeoutInterval:20];
 [NSURLConnection sendAsynchronousRequest:request queue:self.operationQueue
 completionHandler:^(NSURLResponse *response, NSData *data, NSError *connectionError)
 {
 NSPurgeableData *cachedData = nil;
 if (data)
 {
 cachedData = [NSPurgeableData dataWithData:data];
 [self.cache setObject:cachedData forKey: keyPath];
 [self saveTile: data toFileSystemWithTilePath:keyPath];
 }
 result(data, connectionError);
 }];
 }
}

using NSCache

MapKit revisited

MapKit revisited © W. Lonsing 2014

Persistent storage
Collect tiles while connected
and use them offline.

Take care of the MKTileOverlayPath

Store the tiles using CoreData
Using the file-system Read the license(s)!

MapKit revisited

MapKit revisited © W. Lonsing 2014

Some demo, maybe

MapKit revisited

MapKit revisited © W. Lonsing 2014

Customization

✦Tiles from different sources can be combined according to

✦scale, or zoom-level

✦location

✦user dependent data

✦ Other overlays can be added:

✦ as map-tiles

✦ as shapes

MapKit revisited

MapKit revisited © W. Lonsing 2014

 MKMapSnapshotOptions *options = [[MKMapSnapshotOptions alloc] init];
 options.region = self.mapView.region;
 options.size = self.mapView.frame.size;
 options.scale = [[UIScreen mainScreen] scale];

 NSURL *fileURL = [NSURL fileURLWithPath:@"path/to/snapshot.png"];

 MKMapSnapshotter *snapshotter = [[MKMapSnapshotter alloc] initWithOptions:options];
 [snapshotter startWithCompletionHandler:^(MKMapSnapshot *snapshot, NSError *error) {
 if (error) {
 NSLog(@"[Error] %@", error);
 return;
 }

 UIImage *image = snapshot.image;
 NSData *data = UIImagePNGRepresentation(image);
 [data writeToURL:fileURL atomically:YES];
 }];

MKMapSnapshotter

Does not draw annotations

MapKit revisited

MapKit revisited © W. Lonsing 2014

Directions

Using directions requires always a connection and/or some sort of registration

Mapkit provides MKDirections and MKDirectionsRequest, provider is Apple.

Third party: MTDirectionsKit (usable before iOS 7.0)

Different provider, API-keys and/or registration is needed.

Once retrieved, directions can be shown on all kind of maps as overlays.

MapKit revisited

MapKit revisited © W. Lonsing 2014

Ecosystem

Some options:

Dedicated own Tile-server, e.g. ArcGis-Server
Using MapBox, TileMill an so on
Using vector-based maps with custom color schemes for renderings

A real ecosystem has been
established in recent years,
MapKit is one part of it.

MapKit revisited

MapKit revisited © W. Lonsing 2014

Thank you!

