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Layers and Animations
Layers and animations are bound in by Apple in 
a very unique way. Layers are special drawing 
areas, which can be animated. 
Thus animations, as in CoreAnimation as part of 
Cocoa, are always based on layers. 
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Brief history: 

Layers as part of an OS were initially developed 
for the iPhone. As soon as others realized how 
powerful they are, the technology was adapted 
for OS X and is now part of all operating system 
by Apple. 

Layers
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Layers
Layers are: 
• rectangular drawing areas 
• connected to an instance of (NS/UI)View 
• in three-dimensional space 

Layers have: 
• drawable properties 
• animatable content
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Layers
Layers are not: 

• three-dimensional objects 
• independent drawing areas on screen 
• mandatory for drawings on screen
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Layer’s Drawing 

3 methods to provide content: 

• set the layer’s contents-property (e.g. as image) 
• provide a drawing delegate 
• subclass CALayer and override ‘display’
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Layer’s Content 
 

// create the layer and set the bounds and position

CALayer *theLayer = [CALayer layer];

theLayer.position = CGPointMake(50.0f,50.0f);
theLayer.bounds = CGRectMake(0.0f,0.0f,100.0f,100.0f);

 // set the contents property to a CGImageRef from elsewhere

theLayer.contents = theImage;
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Layer with a Delegate 
...
// create the layer and set the bounds and position
CALayer *theLayer = [CALayer layer];
theLayer.position = ...
 // set the delegate property 

theLayer.delegate = self;

...
- (void)displayLayer:(CALayer *)theLayer
{// Do some checks and set the content

    theLayer.contents = theImage;
}

Method to show content:
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Layer with a Delegate (draw) 

- (void)drawLayer:(CALayer *)theLayer inContext:
(CGContextRef)theContext
{
// Do drawing here
}

Method to draw:
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Subclassing CALayer

- (void)display
{
// Set the contents here
}

- (void)drawInContext:(CGContextRef)theContext
{
// Do drawing here
}

Again 2 methods, one to show content, and one to 
draw. One needs to be overwritten: 
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Layer’s Drawing 

Preferred methods: 

• set the layer’s contents-property directly 
or 
• provide a drawing delegate
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Layers and their View 

Both types of views, UIView and NSView, 
provide similar properties to access their layers. 
On OS X, you need to implement: 

There is a distinction between layer-hosting and 
layer-backing on OS X. 
...

[myView setWantsLayer: YES];
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Hosted Layer 

While backed views are only for implicit drawings 
and animations, hosted layers are directly 
accessed. All properties, the layer’s tree and the 
animations are at hand as a layer can provide 
them. 
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Layer’s Tree

Layers inside a view can have their own 
hierarchy. All CALayer have the property 
“sublayers”. If set, a complex tree can be build, 
with tens or hundreds or thousands of 
sublayers, each containing their own drawing, 
own properties, animation and sublayers.
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Animation

An animation, as transformation over a given 
time, is the most prominent feature of CALayers: 
All layers can be animated, and all properties of 
a layer are animatable.
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Demo

Hornstein Impact 

Fireworks:  
http://developer.apple.com/mac/library/
samplecode/Fireworks/Introduction/Intro.html

http://developer.apple.com/mac/library/samplecode/Fireworks/Introduction/Intro.html

