
© W. Lonsing 2010 Layer and Animation

Layers and Animations
Layers and animations are bound in by Apple in
a very unique way. Layers are special drawing
areas, which can be animated.
Thus animations, as in CoreAnimation as part of
Cocoa, are always based on layers.

© W. Lonsing 2010 Layer and Animation

Brief history:

Layers as part of an OS were initially developed
for the iPhone. As soon as others realized how
powerful they are, the technology was adapted
for OS X and is now part of all operating system
by Apple.

Layers

© W. Lonsing 2010 Layer and Animation

Layers
Layers are:
• rectangular drawing areas
• connected to an instance of (NS/UI)View
• in three-dimensional space

Layers have:
• drawable properties
• animatable content

© W. Lonsing 2010 Layer and Animation

Layers
Layers are not:

• three-dimensional objects
• independent drawing areas on screen
• mandatory for drawings on screen

© W. Lonsing 2010 Layer and Animation

Layer’s Drawing

3 methods to provide content:

• set the layer’s contents-property (e.g. as image)
• provide a drawing delegate
• subclass CALayer and override ‘display’

© W. Lonsing 2010 Layer and Animation

Layer’s Content

// create the layer and set the bounds and position

CALayer *theLayer = [CALayer layer];

theLayer.position = CGPointMake(50.0f,50.0f);
theLayer.bounds = CGRectMake(0.0f,0.0f,100.0f,100.0f);

 // set the contents property to a CGImageRef from elsewhere

theLayer.contents = theImage;

© W. Lonsing 2010 Layer and Animation

Layer with a Delegate
...
// create the layer and set the bounds and position
CALayer *theLayer = [CALayer layer];
theLayer.position = ...
 // set the delegate property

theLayer.delegate = self;

...
- (void)displayLayer:(CALayer *)theLayer
{// Do some checks and set the content

 theLayer.contents = theImage;
}

Method to show content:

© W. Lonsing 2010 Layer and Animation

Layer with a Delegate (draw)

- (void)drawLayer:(CALayer *)theLayer inContext:
(CGContextRef)theContext
{
// Do drawing here
}

Method to draw:

© W. Lonsing 2010 Layer and Animation

Subclassing CALayer

- (void)display
{
// Set the contents here
}

- (void)drawInContext:(CGContextRef)theContext
{
// Do drawing here
}

Again 2 methods, one to show content, and one to
draw. One needs to be overwritten:

© W. Lonsing 2010 Layer and Animation

Layer’s Drawing

Preferred methods:

• set the layer’s contents-property directly
or
• provide a drawing delegate

© W. Lonsing 2010 Layer and Animation

Layers and their View

Both types of views, UIView and NSView,
provide similar properties to access their layers.
On OS X, you need to implement:

There is a distinction between layer-hosting and
layer-backing on OS X.
...

[myView setWantsLayer: YES];

© W. Lonsing 2010 Layer and Animation

Hosted Layer

While backed views are only for implicit drawings
and animations, hosted layers are directly
accessed. All properties, the layer’s tree and the
animations are at hand as a layer can provide
them.

© W. Lonsing 2010 Layer and Animation

Layer’s Tree

Layers inside a view can have their own
hierarchy. All CALayer have the property
“sublayers”. If set, a complex tree can be build,
with tens or hundreds or thousands of
sublayers, each containing their own drawing,
own properties, animation and sublayers.

© W. Lonsing 2010 Layer and Animation

Animation

An animation, as transformation over a given
time, is the most prominent feature of CALayers:
All layers can be animated, and all properties of
a layer are animatable.

© W. Lonsing 2010 Layer and Animation

Demo

Hornstein Impact

Fireworks:
http://developer.apple.com/mac/library/
samplecode/Fireworks/Introduction/Intro.html

http://developer.apple.com/mac/library/samplecode/Fireworks/Introduction/Intro.html

